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Supplementary Methods 

Visual analogue scales 

Individual items from the visual analogue scales (VAS) were collapsed to reflect subjective factors 

‘alertness’ and ‘tranquillity’ (Herbert et al., 1976). Scales used to calculate ‘alertness’ were: alert–

drowsy, strong–feeble, muzzy–clear headed, well coordinated–clumsy, lethargic–energetic, mentally 

slow–quick witted, attentive–dreamy, incompetent–proficient and interested–bored. VAS items 

used to calculate ‘tranquillity’ were: calm–excited, contented–discontented, troubled–tranquil, 

tense–relaxed, happy–sad, antagonistic–amicable and withdrawn–gregarious. The words on the 

right were scored as 100. 

 

Gaussian process classification 

We only provide a brief introduction to GPC inference here, but more detail can be found elsewhere 

(Rasmussen and Williams, 2006; Marquand et al., 2010b). Formally, a Gaussian process (GP) is the 

generalization of the multivariate Gaussian distribution to infinitely many dimensions (where any 

finite number are multivariate Gaussian) and can be uniquely described by its mean ( ( )) and 

covariance ( (    )) functions:     ( ( )  (    )). Given a set of ‘training’ data:    

*         +  *     +   
 , where the    are d-dimensional input vectors and the    are binary class 

labels satisfying    *    +, GP models may be used to learn statistical properties of the training 

set that enables accurate prediction of the label of unseen data points (the ‘test set’) using Bayesian 

probability theory. Predictions take the form of class probabilities:  (  
   |  

   ), which describe 

the probability that data sample   
  belongs to class C given the training data. 

There are two equivalent perspectives on GP inference, referred to as the ‘weight-’ and 

‘function space’ views. From the weight space view, linear GPC can be considered a Bayesian 

extension of logistic regression where the probability of membership of class 1 is derived by 
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squashing an unbounded linear function of the input vectors and a weight vector (w) through a 

sigmoidal ‘likelihood’ function (), i.e.:  (    |    )   (  
  )   (  ). This ensures predictions 

lie on the unit interval and so have a valid probabilistic interpretation. In this paper we use the 

probit likelihood:  ( )   ( )  ∫  ( |   )  
 

  
.1 In ordinary logistic regression the weights are 

estimated by maximum likelihood, which can be prone to overfitting and is not appropriate in ill-

posed problem domains where the input dimensionality greatly exceeds the number of samples (e.g. 

neuroimaging data). In GPC inference this is solved by first applying a zero-mean Gaussian prior to 

the weights, then computing the posterior weight distribution by the rules of probability (especially 

Bayes rule).  

It turns out to be more convenient to adopt the function space view of GP modelling, where 

inference proceeds by applying a zero-mean Gaussian prior directly to the   , which are viewed as a 

latent function that models relationships using the data. From this perspective, the weights are 

integrated out as nuisance parameters and inference proceeds by computing the posterior function 

distribution by Bayes rule. GPC inference can thus be divided into two steps: (1) use Bayes’ rule to 

compute the posterior function distribution and (2) compute the posterior expectation of the test 

point to produce a prediction. Collecting all function values into a vector (f), Bayes’ rule can be 

written as: 

  ( |   )  
 ( |   ) ( | )

 ( | )
 

 ( |   )

 ( | )
∏ (  

 

   

  ) (S1) 

Here,  (   ) describes the prior over the latent function and we have factorised the likelihood over 

training samples. We have also written each likelihood term as  (  |  )   (    )  owing to the 

symmetry of the probit likelihood. Model hyperparameters are denoted by  , and can be set by 

maximising the marginal likelihood (the denominator in equation S1). The posterior in equation S1 

are both analytically intractable, but can be approximated by a Gaussian:  ( |   )   (   ), 

                                                           
1
 This implies that technically, the implementation of GPC employed here should be considered an extension of 
‘probit regression’ not logistic regression. 
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where the approximate parameters   and   are computed using the expectation propagation 

algorithm (Minka, 2001; Rasmussen and Williams, 2006). Once the approximate posterior has been 

computed, it can then be used to compute: (1) the marginal likelihood and (2) the approximate 

posterior for the test case. Following Kuss and Rasmussen (2005), the latter can be computed by: 

   (  |      )   (  |      
)  

               

    
    (     )     (           )    

 

Finally, predictions are made by computing the posterior expectation of the latent function at the 

test point:  

 
 (    |    )  ∫ (  ) (  |      )    

 

 
   (

  

√     
 
) 

(S2) 

We used a customised version of the Gaussian processes for machine learning toolbox 

(www.gaussianprocess.org/gpml) for all GPC inference. 

 

GPC covariance function 

A crucial component of GPC inference is the prior covariance function (or kernel), which measures 

similarity between all data points. Like SVM, GPC supports the specification of non-linear kernels, 

but in this paper, we use a linear kernel that can be specified as: 

    
 

  
      (S3) 

 

http://www.gaussianprocess.org/gpml
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Where the model hyperparameters are: l2, (a regularisation hyperparameter) and b (a bias term) 

(Marquand et al., 2010b). Using such a linear kernel helps to prevent overfitting and allows direct 

extraction of the weight vector as an image, which is important to estimate the contribution of each 

voxel to the decision function and is essential for recursive feature elimination, as described in the 

next section. 

 

Recursive Feature Elimination 

Recursive feature elimination(RFE; Guyon et al., 2002) is a backward elimination feature selection 

approach that aims to find a parsimonious set of discriminating features by iteratively removing the 

least informative features. Here we present an adaptation of RFE for GP classifiers (‘GPC-RFE’), 

introduced in Marquand et al. (2010a). RFE involves repeatedly training a classifier and at each 

iteration ranking features and removing a subset of the lowest ranking features, which continues 

until no features remain. The predictive performance of the classifier is measured at each stage of 

feature removal (on an independent sample), allowing an optimal number of features that 

maximises predictive performance to be selected. For the ranking criterion, we use the square of the 

maximum aposteriori estimate of the weight vector (i.e. * ̂ 
 +   

 ), which using vector notation can 

be computed by:  

   ̂  
 

  
        (S4) 

 

We remove a fixed number of features at each iteration (2% of cerebral voxels). This value was 

chosen empirically to provide fine-grained control over the number of features retained in 

reasonable computation time, but in practice we found similar results were obtained using a range 

of step sizes.  
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Determining the optimal number of features 

We used nested leave-one-out cross-validation (LOO-CV) to determine the optimal number of 

features as described in the main text (Algorithm S1). For optimal performance, it is important to be 

able to accurately measure classifier performance at different stages of feature removal. RFE is 

usually applied to SVM classifiers, where classification accuracy is the most common measure of 

classifier performance. However, classification accuracy is a coarse measure that does not consider 

the confidence of a classifier’s predictions. For probabilistic classifiers such as GPC, classification 

accuracy is therefore suboptimal. Following Guyon et al. (2002) who used several metrics of classifier 

quality at each stage of feature elimination, we use classification accuracy and an additional metric 

known as ‘target information’ (Rasmussen and Williams, 2006) that includes information about 

predictive confidence in addition to whether predictions are right or wrong (e.g. strongly penalising 

confident misclassifications) which helps: (1) to differentiate voxel subsets that would otherwise 

produce equal LOO-CV accuracy and (2) to reduce the variability of the size of the optimal feature 

set across LOO-CV folds. For binary classifiers, target information can be computed by equation 3 

(see also: Rasmussen and Williams, 2006, ch. 3):  

   
 

 
[ ∑     ( (  

   |  
 ))

     

 ∑     (   (  
    |  

 ))

     

]    (S5) 

 

C1 and C2 denote class 1 and 2 respectively, H is the entropy of the test set and we have 

omitted explicit dependence on the training dataset for clarity. Note that H = 1 if the number of 

elements belonging to class 1 and 2 are equal (which is always true here).  
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Visualisation of the differential activity pattern 

As described in the main text, to visualise the differential activity pattern for each classifier, we did 

not visualise the classifier weights, but instead employed a mapping approach that permits 

visualisation of the relative class distribution (Marquand et al., 2010b). Thus, multivariate brain maps 

can be computed by:           , where      is the mean of the latent function evaluated at 

each data point. 

 

For clarity, a summary of GPC-RFE is presented in algorithm S1 

 

Algorithm S1: GPC-RFE 

Input:  N number of subjects 

 V: total number of voxels 

S: step size 

X1: data matrix (class 1) 

X2: data matrix (class 2) 

y: data labels 

 

for i = 1,..,N // Nested LOO-CV loop 

// Parameter optimization  

v = [1,..,V]T // voxels to include 

Xtest = [X1(i,:)
T X2(i,:)

T]T 

for j = 1,…, i-1, i+1,…, N 

k = length(v) 

while k > 1 

XVALID = [X1(j,v)T X2(j,v)T]T
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XTRAIN = [X1(\ij,v)T X2(\ij,v)T]T
 

train/test GPC using XTRAIN/XVALID 

save validation predictions 

compute ŵ (Equation S3) 

remove S voxels having lowest ŵl
2 from v 

end while 

end for   

// now compute target information and accuracy on the validation set (iVALID and aVALID) using   

// saved predictions and determine the optimal number of voxels (vOPT ) for this LOO-CV fold 

Compute aVALID and iVALID for all k (Equation S5) 

vOPT(i) = mean(argmax (aVALID), argmax(iVALID )) 

 

// Testing 

v = [1,..,V] T 

XTRAIN = [X1(\i,:)T X2(\i,:)T]T
 

train GPC using XTRAIN 

compute ŵ (Equation S4) 

remove vOPT(i) voxels with lowest ŵl
2 from v 

XTRAIN = [X1(\i,v)T X2(\i,v)T]T 

XTEST = [X1(i,v)T X2(i,v)T]T 

train/test GPC using XTRAIN/XTEST  

save test predictions 

end for 

// finally compute performance metrics 

compute aTEST and iTEST (Equation S5) 
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Supplementary Results and Discussion 

Performance measures 

A summary of mean RT and accuracy for each drug and reward condition of the WM task during 

each is provided in Table S 1. 

 

 

Placebo Atomoxetine Methylphenidate 

Rewarded 
Non-

rewarded 
Rewarded 

Non-
rewarded 

Rewarded 
Non-

rewarded 

Mean (SEM) 
Reaction Time (ms) 

1022 (38) 1030 (41) 1020 (36)  1031 (28)  1032 (27) 1016 (18) 

Mean (SEM) 
Accuracy (%) 

83.00 (0.02) 76.00 (0.03) 80.30 (0.02) 80.00 (0.02) 83.33 (0.02) 74.65 (0.04) 

 

Table S 1: Reaction time and accuracy for the rewarded WM task. Mean (SEM) of 15 subjects. 

 

Distribution maps: task versus baseline (control) 

Whole-brain distribution maps derived from the classifiers trained to separate each WM component 

from baseline using non-rewarded trials are presented in Figure S 1. 
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Figure S 1: Whole-brain GPC distribution maps for classifiers discriminating between task and baseline for each WM 

component (non-rewarded trials). A: Encoding B: Delay, C: Retrieval. Maps were rescaled such that the absolute 

maximum coefficient score was +/-1. The magnitude of GPC coefficients provides a measure of the relative difference in 

BOLD activity between experimental classes (in the context of the entire pattern) and the sign favours the class with 

greater mean activity. A distributed fronto-parietal network can be observed for each WM component along with task-

related deactivations (TRDs) in regions consistent with the default mode network (DMN) 

 

Distribution maps: task versus baseline (rewarded) 

Whole-brain distribution maps derived from the classifiers trained to separate each WM component 

from baseline using rewarded trials are presented in Figure S 2. 
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Figure S 2: Whole-brain GPC maps for classifiers discriminating between task and baseline for each working memory 

component (rewarded trials). Maps were rescaled such that the absolute maximum coefficient score was +/-1.  A: 

encoding B: delay C: retrieval. Positive coefficients: task, negative: baseline. A distributed fronto-parietal network can be 

observed for each WM component 

 

The distributed network of brain regions engaged by this task corresponds well to the activation foci 

described in previous studies where GLM analysis was employed (e.g. Curtis et al., 2004; Gibbs and 

D'Esposito, 2005), although the present analysis method is not limited to detection of focal effects.  

 

Classification accuracy: whole-brain classifiers 

For comparison with the GPC-RFE classifiers reported in the main text, we also report classification 

accuracy for comparable whole-brain GPC classifiers firstly for the classifiers discriminating between 

reward and control for each WM component and drug state (Figure S 3A) and secondly for the 
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classifiers discriminating between drug conditions (Figure S 3B and C). The results are broadly 

similar, although differences from GPC-RFE classifiers are notable for MPH vs. PLC encoding on 

rewarded trials (66.67% GPC-RFE vs. 46.67% whole-brain GPC), ATX vs. PLC delay on rewarded trials 

(63.33% vs. 53.33%) and MPH vs. ATX encoding on non-rewarded trials (56.67% vs. 63.33%). The 

spatial map of the differential pattern for a sparse representation such as that derived using GPC-

RFE allows inferences based on brain regions (or networks) which are derived in a principled 

manner.  This contrasts with the whole brain mapping approach which gives no formal indication of 

the importance of specific brain regions to classification accuracy. For this reason, we have focussed 

on the GPC-RFE spatial representations in the main manuscript.  

 

Figure S 3: Classification accuracy for whole-brain GPC classifiers for A: rewarded vs. non-rewarded trials, B: ATX vs. PLC, 
C: MPH vs. PLC and D: MPH vs. ATX. Asterisks indicate results significantly different from chance, i.e. 50% (p < 0.05, 
binomial test).  
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Distribution maps: ATX versus PLC (non-rewarded trials, encoding component) 

The GPC-RFE distribution map for the classifier contrasting ATX and PLC for the encoding component 

of non-rewarded trials is presented in Figure S 4. We emphasize that this map was derived from a 

classifier that did not discriminate between classes above chance level (57% accuracy), so cannot be 

considered statistically sound (analogous to sub-threshold effects in a conventional univariate 

analysis). We present this map simply to illustrate that the differential pattern for ATX and PLC on 

the encoding pattern of non-rewarded trials shows some similarities with the map contrasting MPH 

and PLC on the encoding component of non-rewarded trials. 

 

Figure S 4: GPC-RFE distribution maps for classifiers discriminating between ATX and PLC for the encoding WM 

component (non-rewarded trials). Note that this was derived from a classifier that did not exceed chance accuracy, so 

should be considered illustrative only. A distributed pattern favouring ATX can be observed that indicates that during 

encoding and in a non-rewarded context ATX weakly enhanced activity in some WM regions and weakly enhanced TRDs 

in DMN regions. 
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